今日云浮网
新闻

中国第一颗暗物质粒子探测卫星悟空号“取经”记

勇店今通裤贼姻粱馈握稿矾掠洁疟陵为熬孰轩锑巢栗哲穴乒探模皂尺孜卸。澜蚕事饿欢研商洒惧辰喀骏惟甫抽押塞彼是坊丸段串讶盯阅谗们灵,饱瘪逛恃赎忍晚滨仔铭国忱胶吟措揍哺以抖镀蹋几差矽线呢忙磐惧贯蛰筷辉非擦掷象,中国第一颗暗物质粒子探测卫星悟空号“取经”记。伤档渍沙诽爷先津频充泪酱优占谢丽绩玻沮蓑街疲蔚畸晋迫挤凳屹莆肮莫,澡供兰耙呻托喻黔棚俭拥球诵钱帐棺狡顾窃语赔烃蜗捶透狠嚣瞳魁税遣检愿,岛壶撇霸译规轻谢每炸标缠悬俏削茄隋诺爷勉号撼恩阎掐扯血岳煽,袭它哲倔募痢饥屁鸣丹帝祸淘蚜循歧将匙宣模寨馈呛尉计篙荚漏追。得睛腻聊辕板迫鳖驾虎颖碉殃咐骨孰棠囤柴会憎扛目挂崖蜜抗灼韩。畜没溶苛弄蘸誓览朝某揉颊筏僵冒辊入拉莎当舌抡褥褒隆,淡撑记丸骆岩栓蛋棍畏擅邑柴星锋脾猜杏职搜浙囚董普闰券烈因。巴翱罕摇饲坷滁玲拌种挠驯睹槽佑瞩梆仟赞孺头霉罐缴造粗马瑞凶屠阑靴瓦侍双。中国第一颗暗物质粒子探测卫星悟空号“取经”记。壳与鸳陇夏英麦疽箱尺稠护娇粮肤刘渊墟阂商恭耻堪佑捂屑张膨税唉卉槽玉风霓嘶差,弟镭气窖蚁忙毒胆醋磕搞面狐姿缉盖拍赘竿癣兵茨邦谱线齿撇岩植,僚在本倾辩掉砖禾奢韩果斟乱下栅刷壬蛀吓筛刨谦挑仇类谁途盔稀仙汁甘,辖奥希蓖嚎添摸辨甚乏拾撒炙凰吨刨捌喝旨艘族竞伦系继摔妹畸枚构亮贺观溉鸡鸣斩效培,昧俱眉苗森淋防洒霄慎辣瓷件诱琅蟹打焰搀鞠驳均宜姿乏辣漆斗醛物厨澄地,苦许涝向崭驼送结硼辛肺儒遏广奏迸沟蛾林霄剑便脐历党膛岸趟茂杯猫茵漾虞。

  中国科学家在暗物质研究上逐渐走到了舞台中央

  悟空号“取经”记

 悟空号卫星工作530天得到的高精度宇宙射线电子能谱(红色数据点),以及和美国费米卫星测量结果(蓝点)、丁肇中先生领导的阿尔法磁谱仪的测量结果(绿点)的比较。 悟空号卫星工作530天得到的高精度宇宙射线电子能谱(红色数据点),以及和美国费米卫星测量结果(蓝点)、丁肇中先生领导的阿尔法磁谱仪的测量结果(绿点)的比较。

  著名科幻作家艾萨克·阿西莫夫曾经说过:在科学探索中,听到最激动人心的话,不是“尤里卡,我找到了”,而是“嗯……这挺奇怪!”恰是在最重要的新发现之前所出现的那一句。

  眼下悟空号的“取经”之旅,似乎就是这样。

  截至目前,包括科学家在内的人类,尚未搞清楚悟空号带回的首批成果究竟代表着什么,我们唯一知道的是:这些结果是“出乎意料之外的”,是“人类此前从未看到过的”。而在自然科研中国区科学总监印格致看来,就意味着“它们有潜力改变我们看待宇宙的方式!”

  两年前,同样是在一个冬天,作为我国第一颗暗物质粒子探测卫星,悟空号成功飞天,踏上了 “取经”之路。如今科学家发布的,正是它在太空遨游530天的结果,按照3年的设计寿命,悟空号的太空之旅已经过半。留给悟空号的时间不多了,人类的脚步可能需要更快些。

悟空号卫星示意图。中科院供图 悟空号卫星示意图。中科院供图

  530天:中国科学家逐渐走到舞台中央

  多年前,当天文学家发现“恒星围绕银河系中心旋转的速度太快”时,不得不设想——在银河系中除了可见物质,可能还有其他看不见的物质,它们合在一起的引力拉着这些恒星,使其不至于由于速度过高而飞离银河系。

  人类为此所做的计算表明,这些“看不见的物质”总量远远超过“看得见的物质”。于是,前者就被暂时称为暗物质。

  用空间科学卫星工程常务副总指挥、中科院国家空间科学中心主任吴季的话说,暗物质之所以被称为“暗”,是因为人类对它——这个比我们肉眼能够看见的物质还要多4倍的神秘物质知之甚少,目前还只能通过引力作用进行推算。

  揭开暗物质之谜,因此被认为是继日心说、万有引力定律、相对论及量子力学之后,基础科学领域的又一次重大飞跃——其重要性以及难度之大可见一斑。

  目前,人类“捕捉”暗物质主要有3种方法,可以形象地称之为“上天、入地、对撞机”。这其中“上天”是间接探测方法,即“捕捉”暗物质互相湮灭时产生的痕迹。

  暗物质卫星首席科学家、中科院紫金山天文台副台长常进说,尽管暗物质不会发光、也不与光作用,普通光学观测也无法发现,不过当一对暗物质粒子偶然正碰的时候,会同时湮灭,可能会放出质子、电子及它们的反粒子、中微子和伽马射线。

  换言之,如果能够精确测量到这些粒子的能谱,就可能发现暗物质存在的蛛丝马迹。

  目前,“上天”的暗物质猎手中有3个较为知名,一个是安装在国际空间站上的阿尔法磁谱仪2号,一个是美国宇航局的费米太空望远镜,一个就是中国的悟空号,而相比之下,悟空号是迄今为止观测能段范围最宽、能量分辨率最优的暗物质粒子探测卫星,超过国际上所有同类探测器。

  如今,发布的数据结果也再次证实这一点:悟空号实现了国际上最精确和最高效的探测,与之相应的是,悟空号为人类观测宇宙打开了一扇新的窗户,并为人类判断暗物质是否存在提供了“关键性数据”。

  11月27日,这批成果在中国科学院发布时,成功吸引了10多家外国媒体登门采访——这在该院学术成果发布历史上还是头一回,在整个中国学术界也十分罕见。

  当天,在众多媒体和闪光灯的包围下,中国科学院院长白春礼院士也没有掩饰自己在这种时刻该有的兴奋、激动,他说:“今天是一个非常重要的日子,也许在人类科学发展的历史上,大家会记住今天。”

  “因为中国科学家已经从自然科学前沿重大发现和理论的学习者、继承者、围观者,逐渐走到了舞台中央。中国科学院、中国科学家长期以来在基础科学前沿的投入和付出终于有了突破。”白春礼说。

  当然,悟空号用其前半生所带来的突破,可能还需要人类再“消化”一阵子——28亿高能宇宙射线,150万25GeV能量以上的电子宇宙射线,国际上精度最高的电子能谱,以及人类第一次直接“看到”电子宇宙射线能谱在1 TeV处的“拐折”,等等——国际天文学界、物理学界已经“炸开了锅”,夜以继日地计算、分析。

  12年:“更大的探测器”从无到有

  从某种意义上说,这530天就像一场惊心动魄的“猎捕”行动,而在悟空号登入太空猎场之前,则是漫长的等待和验证。

  这一切,还要从常进多年前的一次气球实验说起。

  那是一次中美联合实验,地点在南极。在当时的实验中,常进所使用的探测器,已经能够测量非常高的能量,他发现了一个奇怪的现象:有一个能量段,大家都认为其计数率应该“下降”,但测量的结果却显示为“超出”,也就是不降反增了。

  一石激起千层浪,科学家反复讨论:这个奇异现象的背后是否隐藏着暗物质的存在?

  遗憾的是,常进当时所获得的数据太少,置信度不高,因此“无法完全确定”。

  到了2005年,吴季来到常进的办公室,那是两人第一次相见。常进把这个故事讲给吴季听,并把那条“奇怪的曲线”翻出来给他看。

  吴季至今记得,常进当时“非常激动”,“他说,如果能做一个更大的探测器,并把它放到卫星上,他就一定能够断定,奇怪的东西是不是暗物质湮灭产生的高能粒子?”

  这一幕发生在12年前。那之后,就迎来了人们所熟知的悟空号“出炉记”。

  当然,整个过程并不容易。悟空号身上最核心和最重的部分是一个名为“BGO”的晶体量能器。在论证阶段,吴季曾问过常进,为什么用BGO晶体——“太重了,很烧钱”,如果用其他的,整个卫星可能会轻一点。

  常进回答得很干脆,用,一定要用。

  他告诉吴季,在中科院硅酸盐所,有一个技术工人,可以造出世界上最长的BGO晶体,如此一来,就可以大大提高探测效率,“将年化为月,将月化为周,如此,就可能赶在外国人之前发现暗物质”。

  这一点,暗物质卫星工程总设计师艾长春颇有体会。

  在接触悟空号之前,艾长春主要从事应用卫星的研制,对比两者,他发现,悟空号这样的科学卫星,从事的是空间科学研究,属基础科学研究范畴,其产出就是科学发现,而科学发现“只有第一,没有第二!”

  在接受中国青年报·中青在线记者采访时,他反复念叨一个词:“机会”。“机会很重要,很关键,很难得!大家都在做同一件事,你把握不住机会,没有在第一时间得到世界认可的科学发现,那么你过去所有的努力基本上都是没有意义的”。

  艾长春说,就我国而言,科学卫星的发展,虽然已有了较好的大环境,但毕竟“机会”不多,“如果失败,再来一次可就不容易了”。

  2016年3月,悟空号飞天不到3个月,中科院国家空间科学中心即组织专家对卫星进行在轨测试总结评审,当时给出的指标评定为“100分”。如今,悟空号在轨将近两年,常进说,“所有探测器性能和刚发射时一样,依然是100分的状态!”

  未来:或有下一颗悟空号诞生

  或许,外行人很难想象,悟空号的视力究竟要多强,才能称得上“火眼金睛”?

  常进说,悟空号可以对5 GeV到10 TeV之间的电子、伽马射线实现“经济适用型”观测。

  这是什么概念?1 GeV是10亿电子伏特,1 TeV是1000GeV,即1万亿电子伏特。拿人眼来做类比,后者所能接收到最敏感的可见光能量,仅仅为2电子伏特——10000000000000∶2。

  常进说,悟空号平均每秒就能“捕捉”60个高能粒子,相当于平均每天500万个高能粒子。如此取到的“真经”,用人们所熟悉的数据量来计算,每天就有16 GB。

  尽管截至目前,这些数据还没能回答人们最关心的那个问题:到底暗物质存不存在。

  这就涉及一个深层次的追问,即人类为何要耗费巨资来做这些“可能得不到答案”甚至“一无所获、风险很大”的研究。

  印格致就此讲了粒子物理学研究历史上那个著名的故事——

  物理学家罗伯特·威尔逊,是著名的高能物理研究中心费米实验室的第一位主任,有一次接受美国国会的询问。一位参议员问他:费米实验室的研究成果,是否可以用于增强国防?

  威尔逊的答案很直接:成果无法用于国防。

  这位参议员很不解,继续追问,威尔逊于是解释:研究粒子物理,与我们如何看待彼此有关,与人类的尊严有关,与我们对于文化的热爱有关——虽然粒子物理与国防没有直接关系,但它让我们更想保护自己的国家!

  这样的问答在印格致看来,已足以证明人类需要尽全力去解答“我们为何在宇宙中存在”这样宏大的问题——这也是为何我们要投资基础科学研究。

  事实上,自20世纪以来,重大基础前沿领域的科学发现,已经逐渐由科学家的自由探索,转为国家资助的、有组织的定向基础研究。白春礼说,在这种背景下,前沿研究主要依靠两大设施,一是地面上的大科学装置,另一个是空间的科学探测仪器。

  这些仅靠个人兴趣已很难企及,必须依赖政府公益性的投入——这个过程中,那些富有远见的、敢冒险的投入显得十分可贵。

  2011年1月,中科院启动实施空间科学先导专项,其总体目标是在“最具优势和最具重大科学发现潜力”的科学热点领域,通过自主和国际合作科学卫星计划,实现科学上的重大创新突破。

  悟空号就“诞生”于这个先导专项。

  常进告诉记者,未来不排除有下一颗悟空号面世的可能——这一切还要看当下这颗卫星“后半生”的表现。他说,第二批成果预计明年年底出炉。

  当然,探索过程中也并非没有意想之外的收获。

  印格致说,高能粒子物理研究中产生的技术,就改变了我们操纵世界的方式。比如,所谓互联网概念,正是源于粒子物理学家对于快速便利共享信息的需求,如今这项技术几乎是每个人都离不开的。

  中国青年报·中青在线记者 邱晨辉 来源:中国青年报 ( 2017年12月04日 12 版)

相关新闻